콘텐츠 바로가기
본문 바로가기


블로그 전체검색
처음 배우는 딥러닝 챗봇

[도서] 처음 배우는 딥러닝 챗봇

조경래 저

내용 평점 5점

구성 평점 5점

 

최근 고객센터에 문의 전화를 하면 처음 만나는 상담원은 챗봇입니다.

먼저 챗봇이 처리 할 수 있는 상담 내역을 처리해 주고 챗봇이 처리하지 못하는 경우에 상담원으로 연결해 주는 것을 많이 경험하고 있습니다.

예전에는 텍스트 유형의 챗봇을 많이 만났는데 이제는 텍스트 유형을 넘어 음성까지도 챗봇이 응대하는 시대가 되었네요~

이러한 챗봇이 어떻게 동작하는지 원리가 무척 궁금해서 이 책을 신청하게 되었습니다.

 

이러한 챗봇의 개발 방법은 여러가지 방법론이 있지만 이 책에서는 특정 분야에 적용되는 FAQ에 응대하는 Q&A 챗봇 개발을 다루고 있습니다.

먼저 이러한 챗봇을 개발 한다고 생각을 해 보면 다음과 같은 작업들이 필요할 것으로 예측이 되네요.

1. 문자열에 대한 형태소(단어)를 분리하고

2. 컴퓨터에서는 텍스트를 처리하지 못하기 때문에 이러한 말뭉치(단어)에 대해 숫자로 변환하고

3. 텍스트의 유사도를 계산 하여 질문에 대한 유사도가 높은 답변을 제공해 줄 수 있을 것입니다.

 

이 책에서는 1장부터 5장까지 위의 문제를 다루기 위해서

파이썬을 다뤄 보고, 문자열을 분리하는 Kkma,Komoran,Okt 등을 다루어 보면서 사용자 사전을 구축합니다.

또한 말뭉치를 원핫인코딩,Word2Vec 등을 이용하여 숫자로 변환해 보며 텍스트의 유사도에 대한 확률을 계산하는 n-gram 유사도, 코사인 유사도 등을 이용해서 챗봇 개발에 대한 개념을 충분히 익혀 봅니다.

 

6장 부터는 이러한 개념을 기반으로 챗봇 개발을 진행해 보는데요~

쳇봇 엔진에 필요한 딥러닝 모델인 케라스 사용법을 살펴 보고 챗봇을 학습한 데이터를 저장할 수 있는 데이터베이스 중 가장 쉽게 접근할 수 있는 MySql 의 사용법 등을 다루어 봅니다.

기본적인 사용법을 살펴 본 후에는 본격적으로 챗봇의 엔진을 만들어 보게 되는데요~

챗봇의 엔진 처리 과정인 전처리과정 -> 의도분석 -> 개체명인식 -> 답변검색 (학습DB) -> 답변 출력 과 같은 순서로 하나씩 구현을 해 봅니다.

이때 다중 접속을 위한 TCP 소켓서버 처리 방법등도 상세히 다루고 있어서 많은 사람이 접속하는 경우도 처리 할 수 있도록 구현이 됩니다.

예제 소스코드에 대한 설명을 그림으로 이해하기 쉽게 설명하고 있다.

 

 

이렇게 만들어진 서비스는 API를 통해서 다른 서비스와 연결이 가능해야 할것입니다.

9장부터는 이렇게 만들어진 서비스를 API로 만들어 보고 카카오톡과 네이버톡톡에 연동하는 방법등을 살펴 봅니다.

 

서평

이 책은 챗봇 엔진부터 NLP,딥러닝,REST API,카카오톡 연동에 이르기까지 챗봇에 필요한 기술을 한권으로 만나 볼 수 있는 챗봇 개발 입문서입니다.

딥러닝에 관심이 있는 학생이라면 케라스를 이용한 인공신경망,이미지분류,문장 분류를 위한 CNN 모델 등을 살펴 보면서 챗봇을 구현하면서 동작원리를 깨닫게 될 수 있을것 같습니다.

또한 챗봇을 이용해서 상담서비스를 기획하고 있는 기업의 개발 담당자 분들이라도 이 책 한권으로 챗봇 서비스를 구현해 볼 수 있기 때문에 서비스 구축에 도움이 될 수 있겠네요.

초보자라고 해도 하나씩 따라 하면서 챗봇서비스에 푹 빠져 볼 수 있는 입문서로 추천을 합니다.

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 
취소

댓글쓰기

저장
덧글 작성
0/1,000

댓글 수 0

댓글쓰기
첫 댓글을 작성해주세요.

PRIDE2